DIFFUSION AND THERMAL SLIP OF A BINARY
GAS MIXTURE
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Let us note that the phenomenon of diffusion slip at a constant gas~mixture temperature
has been considered in [1], for example, and thermal slip for a single~component gas in
[2]. The slip velocity of a binary gas mixture has been calculated in a field of the tem-~
perature gradient and of the partial pressure gradients. The kinetic equation is solved
by an approximate method based on physical considerations. A formula has been ob~
tained analytically for the slip velocity for arbitrary accommodation coefficients as well
as for arbitrary gas concentrations and arbitrary molecule masses. The results agree
to 1% accuracy with the numerical computations of other authors.

The kinetic equation in the model form proposed by Bhatnagar, Gross, and Krook [3] is utilized to
describe the system. As is known, this model yields good agreement with experiment andis considerably
simpler than the Boltzmann equation in mathematical respects. On the other hand, this model does not
describe a number of effects since it is assumed that the time of particle collision is independent of their
velocity (Maxwellian molecules). This refers primarily to the phenomenon of thermal diffusion of gases.
Therefore, the subsequent reasoning is applicable to gases which possess low thermal diffusion coefficients.

Let a mixture of gases with the densities n; and n, and the molecule masses m; and m, fill the half-
space x > 0 above the x=0 plane whose temperature T, varies along the y coordinate. The medium is con-
sidered homogeneous in the z direction.

Let us write the system of equations for a binary gas mixture as [3]
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Here u is the mass flow rate of the gas mixture along the surface (the flow is assumed one-dimen~
sional), 7§ is the time of particle collision independent, as mentioned above, of the particle velocity, and
fix, y, v) is the distribution function of molecules of the i-th gas in the velocities v.

The quantities nj, u, T are functionalsof fi:
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The temperature is measured in energy units, The collision terms in (1) have been chosen in simpli-
fied form; however, they conserve the number of particles of each gas and for 7 =7 ,=7 conserve the total

momentum and total energy. Therefore, 7 is understood to be some mean-relaxation time of the whole gas
mixture.
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The law of molecule interaction with the surface in such an approach can be arbitrary. Let us limit

ourselves to the most widespread approximation in which it is assumed that part of the molecules are re-
flected specularly and part diffusely:

fi@=0,050y0) = (1 =) i (2 =0, — vy, vy, v,) + ¢ifip
(v >0) (2

Here fip is the distribution function of the diffusely reflected molecules,and g; is the accommodation
coefficient.

The specific form of the function fijp is essential. It follows from the condition of diffusivity of the
reflection that

Sv,_,fmdv =0
As usual, let us seek the solution of (1) in the form
fi=fio + % (<L foi) (3)
Substituting (3) into (1) and linearizing [2], we obtain the systém of integrodifferential equations
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Let us introduce the new variables
& = zftw, ¢ = v,lw (5)
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Multiplying both sides of (4) by vy and integrating over vy and v, we obtain a system of equations for
U, and Uy
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In deriving (9) it was assumed that P=P,+ P,=const. Multiplying (8) and (9) by pi/p and adding, we
obtain :

c%% + U= u(§) I Ll gesor . B2 e“”/"z’J

:;;n:) [ L gerne é e-waz] 2'1‘1’;@ {[ P /0 T2 e.czle,z]__gcz[ eol% é%:_ e_g:,gzg]} (10
where U=p~{(U;p,+ Uypy).
From (2) follows the boundary condition
UE=0,0=UE=0,—0) -—-é— [g101U1 (€ = 0, — ¢) + ¢:p.U5(E = 0,—¢)] (11)
(c>0)
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Equations (7), (10), (11) form a closed system to determine U(c£). This system can be reduced fo an
integral equation of nondifference type. Because of the mathematical difficulties inherent in the solution of
such an equation, let us try to solve the system (7), (10}, (11) by the approximate method proposed in [4].

This method possesses sufficiently high accuracy in combination with simplicity. It is shown in [4]
on the model of a Lorentz gas that solutions obtained by using this method differ only by several percent
from the exact solutions obtained by considerably more awkward methods or by numerical machine com-~
putations. We shall be interested in solving the equations associated with sources. Since the latter de-
crease as ¢ — =, then the solution tends to a constant as £ — !

#(®) = a(E—> ) (12)
The problem is to find this quantity, which is called the slip velocity.
It follows from (10) that for ¢ —e
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We therefore have
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Multiplying (10) by ¢ and integrating, we obtain
o
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The quantity ¢ can be found by calculating L as §— oo (U{e, &) is found from (10)) and equating it to
E~00

the value calculated for £ =0. To do this it is necessary to know U(c; <0, £=0). An approximate expression
can be obtained for U(e<0, £=0) by putting u=a® in (10):
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Ufe > 0, 0) is found from the boundary condition (11) and (8), (9). To find ¢() we require compliance with
the conservation law (13).

The reasoning confirming the sufficient aceuracy of such a method of finding U(e, 0) is elucidated in
[4]. Performing the operation mentioned, we obtain
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Knowing the expression for U(c, 0) for ¢<0, we ‘can calculate thequantity a by utilizing (14), (10}, (15)
and taking account of the boundary condition (11)
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Substituting (16) into (17), we finally obtain
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The first member of (18) proportional to P/ is called the diffusion slip velocity, while the second is
the thermal slip velocity of the mixture. For my=my, 4;=(¢y=q (a one-component gas), the diffusion slip
velomty vanishes, as indeed it should.



Let us express the 7 in (18) in terms of the transport coefficients of the gas mixture, the coefficients
of diffusion and heat conduction. Since diffusion slip originates from terms of the expansion in the kinetic
equation which are proportional to P*, this effect is then related to the diffusion (Dy;). Analogously, the
thermal-slip effect is related to the heat conduction (#). The connection between T and D,, can be found
from the condition that the system (8), (9) correctly describes diffusion in unbounded space at great dig~
tances from the wall [5]:

— Uy = — Dy :;’: (19)

Finding the difference between u, and u, from the system (8), {9) and equating it to (19), we obtain

_ Drwymymaen
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The connection between 7 and w is found analogously. Expressing Dy, and % in terms of 7, we finally
obtain in place of (18)

s [ @B~ @B ( g1y + gone ( R AT mlmn
%= 1010101 T 7200 1= 2n ) + m m,z) Zn} DypPy’ 21
{41917?'1 -} goBane ( P -+ gana’, ihﬂi ane 41 = i'bl 73 ]'1 T
10101 -+ 28202 \ 2n } n | 5ET ms

where k is the Boltzmann constant.
An expression for the slip velocity is obtained numerically in [6] for T'=0 in the particular case
g =g =1, nlng—0, my/my = ¥, (water vapor in air)

Under these conditions we obtain from (21)
a= —0,275D,, ™ (22)
ne

A value of the numerical coefficient, 0.277, is presented in [6] which is only 1% different from the
coefficient in (22).

As has already been remarked at the beginning of the paper, the model which has been used to obtain
the results can be applied to mixtures of gases having a low coefficient of thermal diffusion. However, it is
later proposed to take account of thermal diffusion to calculate the thermal slip velocity of a binary mixture
by applying the same approximate method of solving the kinetic equation to the linearized Boltzmann equa~
tion.
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